

Assessment of Vortex Induced Vibrations on wind turbines

Dimitris I. Manolas¹, Panagiotis K. Chaviaropoulos¹, Vasilis A. Riziotis²

¹iWind Renewables PC, Kleisthenous 166 Gerakas, GR15344, Athens, Greece ²National Technical University of Athens, Heroon Polytechniou 9 Zografou, GR 15780, Athens, Greece

> Wind Europe Conference, Bilbao, 6 April 2022

Outline

- **D** Engineering, semi-empirical VIV framework
 - Overview of EUROCODE VIV Approach 1
 - Enhancements of VIV Approach 1
 - Modeling assumptions
- Numerical results for the NREL 5MW RWT
 - Modal analysis
 - Eigenvalue stability analysis
 - VIV analysis
- **Summary**

Overview of EUROCODE VIV Approach 1

 $\frac{y_{max}}{D} = \frac{1}{Sc} \frac{1}{St^2} K_w K \Delta C_L$

Scruton and Strouhal numbers $Sc = \frac{4\pi\xi_i m_{ei}}{\rho D^2}$ $St = \frac{D\omega}{2\pi V}$

Effective correlation length factor

$$K_w = \int_{L_i} |\varphi_i(x)| dx / \int_0^l |\varphi_i(x)| dx \le 0.6$$

Mode shape factor

$$K = \frac{1}{4\pi} \int_{0}^{l} |\varphi_{i}(x)| dx / \int_{0}^{l} \varphi_{i}^{2}(x) dx$$

Equivalent mass per unit length

$$m_{ei} = \int_0^l m(x)\varphi_i^2(x)dx \, / \int_0^l \varphi_i^2(x)dx$$

Overview of EUROCODE VIV Approach 1

$\frac{y_{max}}{D} = \frac{1}{Sc} \frac{1}{St^2} \frac{1}{K_w} K \Delta C_L$

Semi-empirical framework (defines L_i , ΔC_1 and St)

y _i /D	L_i/D
< 0.1	6
0.1-0.6	Interpolation
> 0.6	12

2D aerodynamic simulations with free wake vortex code

Enhancements of VIV approach 1

Two methods available in EC

- Approach 1 simple, general but less accurate
- Approach 2 better calibrated but only applicable for the 1st bending mode of cantilever beams

Negative aerodynamic damping term $f(x,t) = \frac{1}{2} \rho V^2 D \ \Delta C_l \cos(\omega t)$ $+ 2 \omega_i \rho D^2 K_a \dot{\gamma}(x,t) (1 - G\dot{n}_i(t)^2) \rightarrow$ $Damp = 2\xi_i \omega_i \left[1 - 4\pi \frac{K_a}{Sc} \left(1 - G\dot{n}_i(t)^2 \right) \right] \dot{y}_i(t)$ where limiter $G = \frac{4}{3} \frac{1}{\omega_t^2 (\gamma/D)_{time}^2}$ Multi-blade configurations and tapering $Sc^* = Sc/(4\pi K_w K)$ $\frac{y_{max}}{D} = \frac{1}{Sc^*} \frac{1}{St^2} \frac{\Delta C_L}{4\pi} \frac{C^3}{D^3}$

Modeling assumptions

Crossflow or Independence Principle (IP)

inclined blades see the projected free stream velocity normal to the body axis.

□ Tapered blade/tower geometries

for tapered geometries, the reduced velocity is calculated using the mean chord/diameter of the shedding area.

□ Two blades do not shed vortices simultaneously

Two blades in ' Λ or V' configuration at ~90° pitch, seeing the flow from the side direction do not shed vortices at the same time, as obtained from CFD calculations.

Natural frequencies of NREL5MW RWT

#	Modeshape	2 blades	1 blade
1	1 st tower fore-aft	0.33	0.34
2	1 st tower side-side	0.33	0.34
3	1 st rotor flapwise asymmetric 1	0.69	-
4	1 st rotor edgewise asymmetric 1	0.88	-
5	1 st rotor flapwise symmetric	1.00	0.94
6	1 st rotor edgewise symmetric	1.11	1.06
7	2 nd tower fore-aft	2.79	2.78
8	2 nd tower side-side	2.88	2.87
9	2 nd rotor flapwise asymmetric 1	1.97	-
10	2 nd rotor flapwise symmetric	2.03	2.01
11	2 nd rotor edgewise asymmetric 1	2.79	-
12	2 nd rotor edgewise symmetric	3.99	3.93

□ 1- and 2- blades are equipped Rotor free, at its equilibrium position (pointing downwards), blade pitch=90°, gravity included Low damped modeshapes considered in VIV analysis. □ 2nd frequencies are too high to be excited within moderate-high

wind speeds

Modeshapes: critical areas for VIV

Eigenvalue stability analysis with steady state aerodynamics

1st edgewise symmetric mode

1st edgewise asymmetric mode

VIV analysis results

Definition of worst VIV cases

ID	Case	Shedding	Excited mode	St	D	С	ΔC
[-]	[-]	[-]	[-]	[-]	[m]	[m]	[-]
1	T-T	Tower Top	1 st tower fore-aft	0.18	3.87	3.87	0.2
2	B-T	Blade 1 Root	1 st tower fore-aft	0.15	3.87	4.20	0.2
3	B-BA	Blade 2 Tip	1 st rotor edge asymmetric	0.12	1.40	2.40	0.2
4	B-BS	Blade 1 Tip	1 st rotor edge symmetric	0.12	1.40	2.40	0.2

Damping values (critical)
Tower : ξ=0.19%
Blades: ξ=0.25%
 ρ_{air} =1.25 kg/m³

Critical inflow conditions

			1-bla	ded			2-bla	ded	
ID	Case	Azimuth	V _{crit}	V _{inf}	YAW _{inf}	Azimuth	V _{crit}	V _{inf}	YAW _{inf}
[-]	[-]	[°]	[m/s]	[m/s]	[°]	[°]	[m/s]	[m/s]	[°]
1	T-T		7.3	7.3	-105		7.1	7.1	-75
2	B-T	186	9.5	9.6	-105	129	9.3	14.7	-75
3	B-BA					218	17.6	22.2	75
4	B-BS	222	21.2	28.5	-105	154	22.2	24.8	-105

VIV analysis results

Definition of worst VIV cases

ID	Case	Shedding	Excited mode	St	D	С	ΔC
[-]	[-]	[-]	[-]	[-]	[m]	[m]	[-]
1	T-T	Tower Top	1 st tower fore-aft	0.18	3.87	3.87	0.2
2	B-T	Blade 1 Root	1 st tower fore-aft	0.15	3.87	4.20	0.2
3	B-BA	Blade 2 Tip	1 st rotor edge asymmetric	0.12	1.40	2.40	0.2
4	B-BS	Blade 1 Tip	1 st rotor edge symmetric	0.12	1.40	2.40	0.2

Modal parameters and maximum oscillation amplitude

			1-bladed								2-bladed					
ID	Case	L _i /C	ξ	m _e	K	Kw	Sc	Sc*	Y _{max}	ξ	m _e	K	Kw	Sc	Sc*	Y _{max}
[-]	[-]	[-]	[%]	[kg/m]	[-]	[-]	[-]	[-]	[m]	[%]	[kg/m]	[-]	[-]	[-]	[-]	[m]
1	T-T	6.0	0.18	8087	0.13	0.27	9.8	23.1	0.08	0.18	3570	0.11	0.13	4.3	24.2	0.07
2	B-T	6.0	0.18	8087	0.13	0.29	9.8	21.0	0.16	0.19	3570	0.11	0.17	4.5	19.7	0.18
3	B-BA	12.0								0.30	121	0.13	0.39	1.9	2.9	2.61
4	B-BS	12.0	1.46	105	0.14	0.60	7.9	7.4	1.06	0.87	97	0.15	0.39	4.3	5.7	1.34

Oscillation amplitudes of moments and deformations

Summary

- An engineering semi-empirical framework was proposed to assess VIV aero-elastic instabilities of the full (coupled) wind turbine configuration.
- □ It uses an extended implementation of EUROCODE "Approach 1" VIV framework for wind turbine configurations, which is incorporated in the state-of-the-art aero-elastic tool hGAST.
- It can be used during the design process to efficiently scan a wide list of critical for VIV cases and to provide the critical inflow conditions, the corresponding oscillation load and deformation amplitudes and to assess critical for VIV design parameters.
- □ Numerical results for single- and two-bladed configurations of the NREL 5MW RWT during assembly were presented for the worst case VIV scenarios examined.
- □ The VIV analysis method is trustful within the assumptions of the semi-empirical aerodynamic framework applied. It is known that the method can be quite inaccurate providing less-conservative results when instabilities do exist and more conservative when they are absent.
- □ To increase confidence in the results, the aerodynamic framework needs further adaptation and calibration, which is only possible through dedicated high fidelity aeroelastic analysis or experimental measurements.

Thank you