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Overview of EUROCODE VIV Approach 1 
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Semi-empirical framework  

(defines Li, ΔCL and St) 

 

 

 

 

ΔCL of circular cross section (tower) 

 

 

 

 

 

 

 

Overview of EUROCODE VIV Approach 1 
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Strouhal and Lift Amplitude 

Strouhal values considered 

 tower (cylinder): 0.18  

 blades – root: 0.15 

 blades – tip: 0.12 

Oscillation amplitude 

of airfoils 

 𝛥𝐶𝐿 = 0.2 

2D aerodynamic simulations with free wake vortex code 
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Enhancements of VIV approach 1 

 Negative aerodynamic damping term 

𝑓 𝑥, 𝑡 =
1

2
 𝜌 𝑉2𝐷  𝛥𝐶𝑙 cos 𝜔 𝑡

+ 2 𝜔𝑖  𝜌  𝐷
2𝐾𝑎𝑦 𝑥, 𝑡 1 − 𝐺𝑛 𝑖 𝑡

2  → 

𝐷𝑎𝑚𝑝 = 2𝜉𝑖𝜔𝑖 1 − 4𝜋
𝐾𝑎
𝑆𝑐

 1 − 𝐺𝑛 𝑖 𝑡
2  𝑦 𝑖 (𝑡) 

where limiter 𝐺 =
4

3
 

1

𝜔𝜄
2(𝑦/𝐷)𝑙𝑖𝑚

2  

Multi-blade configurations and tapering 

𝑆𝑐∗ = 𝑆𝑐/(4𝜋𝐾𝑤𝐾 ) 

𝑦𝑚𝑎𝑥

𝐷
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1

𝑆𝑐∗
1

𝑆𝑡2
Δ𝐶𝐿
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Two methods available in EC 

 Approach 1 simple, general but less accurate  

 Approach 2 better calibrated but only applicable 

for the 1st bending mode of cantilever beams 

Approach 2 

Approach 1 

Sccrit=4πKα 
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Modeling assumptions 

 Crossflow or Independence Principle (IP) 

inclined blades see the projected free stream velocity 

normal to the body axis. 

 Tapered blade/tower geometries 

for tapered geometries, the reduced velocity is calculated 

using the mean chord/diameter of the shedding area. 

 Two blades do not shed vortices simultaneously 

Two blades in „Λ or V‟ configuration at ~90° pitch, seeing 

the flow from the side direction do not shed vortices at 

the same time, as obtained from CFD calculations. 

Incoming 

wind 

Wind 

component 

normal to 

body axis 

Shedding 

areas 
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Natural frequencies of NREL5MW RWT  

# Modeshape 2 blades 1 blade 

1 1st tower fore-aft 0.33 0.34 

2 1st tower side-side 0.33 0.34 

3 1st rotor flapwise asymmetric 1 0.69 - 

4 1st rotor edgewise asymmetric 1 0.88 - 

5 1st rotor flapwise symmetric 1.00 0.94 

6 1st rotor edgewise symmetric 1.11 1.06 

7 2nd tower fore-aft 2.79 2.78 

8 2nd tower side-side 2.88 2.87 

9 2nd rotor flapwise asymmetric 1 1.97 - 

10 2nd rotor flapwise symmetric 2.03 2.01 

11 2nd rotor edgewise asymmetric 1 2.79 - 

12 2nd rotor edgewise symmetric 3.99 3.93 

 1- and 2- blades are 

equipped 

 Rotor free, at its 

equilibrium position 

(pointing downwards), 

blade pitch=90°, 

gravity included 

 Low damped 

modeshapes 

considered in VIV 

analysis. 

 2nd frequencies are too 

high to be excited 

within moderate-high 

wind speeds  
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Modeshapes: critical areas for VIV 

Effective 

 correlation length 

Amplitude 
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Total (Aerodynamic & Structural) Damping 

 Eigenvalue stability analysis with steady state aerodynamics 

1st edgewise symmetric mode 1st edgewise asymmetric mode 
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VIV analysis results  

Definition of worst VIV cases 

 Damping values (critical) 

Tower  : ξ=0.19% 

Blades: ξ=0.25% 

 ρair=1.25 kg/m3 

ID Case Shedding Excited mode St D C ΔCL 

[-] [-] [-] [-] [-] [m] [m] [-] 

1 T-T Tower Top 1st tower fore-aft 0.18 3.87 3.87 0.2 

2 B-T Blade 1 Root 1st tower fore-aft 0.15 3.87 4.20 0.2 

3 B-BA Blade 2 Tip 1st rotor edge asymmetric 0.12 1.40 2.40 0.2 

4 B-BS Blade 1 Tip 1st rotor edge symmetric 0.12 1.40 2.40 0.2 

Critical inflow conditions 

ID Case 

1-bladed 2-bladed 

Azimuth Vcrit Vinf YAWinf Azimuth Vcrit Vinf YAWinf 

[-] [-] [°] [m/s] [m/s] [°] [°] [m/s] [m/s] [°] 

1 T-T 7.3 7.3 -105 7.1 7.1 -75 

2 B-T 186 9.5 9.6 -105 129 9.3 14.7 -75 

3 B-BA 218 17.6 22.2 75 

4 B-BS 222 21.2 28.5 -105 154 22.2 24.8 -105 
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VIV analysis results  

Definition of worst VIV cases 

Modal parameters and maximum oscillation amplitude  

ID Case Li/C 

1-bladed 2-bladed 

ξ me K Kw Sc Sc* Ymax ξ me K Kw Sc Sc* Ymax 

[-] [-] [-] [%] [kg/m] [-] [-] [-] [-] [m] [%] [kg/m] [-] [-] [-] [-] [m] 

1 T-T 6.0 0.18 8087 0.13 0.27 9.8 23.1 0.08 0.18 3570 0.11 0.13 4.3 24.2 0.07 

2 B-T 6.0 0.18 8087 0.13 0.29 9.8 21.0 0.16 0.19 3570 0.11 0.17 4.5 19.7 0.18 

3 B-BA 12.0 0.30 121 0.13 0.39 1.9 2.9 2.61 

4 B-BS 12.0 1.46 105 0.14 0.60 7.9 7.4 1.06 0.87 97 0.15 0.39 4.3 5.7 1.34 

𝑆𝑐 =
4𝜋𝜉𝑖 𝑚𝑒𝑖

𝜌𝐷2
 

𝑆𝑐∗ = 𝑆𝑐/(4𝜋𝐾𝑤𝐾 ) 

𝑦𝑚𝑎𝑥

𝐷
=

1

𝑆𝑐∗
1

𝑆𝑡2
Δ𝐶𝐿
4𝜋

𝐶3

𝐷3
 

ID Case Shedding Excited mode St D C ΔCL 

[-] [-] [-] [-] [-] [m] [m] [-] 

1 T-T Tower Top 1st tower fore-aft 0.18 3.87 3.87 0.2 

2 B-T Blade 1 Root 1st tower fore-aft 0.15 3.87 4.20 0.2 

3 B-BA Blade 2 Tip 1st rotor edge asymmetric 0.12 1.40 2.40 0.2 

4 B-BS Blade 1 Tip 1st rotor edge symmetric 0.12 1.40 2.40 0.2 
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Oscillation amplitudes of moments and deformations 

Tower (T-T and B-T) Blades (B-BS and B-BA) 

Fore-aft moment 

Fore-aft deformation 

Edgewise moment 

Edgewise deformation 

 Similar 

predictions for 

single and 

two-bladed 

setups 

 T/B-T low risk 

B-BS  mid risk 

B-BA  high risk 
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Summary 

 An engineering semi-empirical framework was proposed to assess VIV aero-elastic instabilities 

of the full (coupled) wind turbine configuration. 

 It uses an extended implementation of EUROCODE “Approach 1” VIV framework for wind 

turbine configurations, which is incorporated in the state-of-the-art aero-elastic tool hGAST. 

 It can be used during the design process to efficiently scan a wide list of critical for VIV cases 

and to provide the critical inflow conditions, the corresponding oscillation load and deformation 

amplitudes and to assess critical for VIV design parameters. 

 Numerical results for single- and two-bladed configurations of the NREL 5MW RWT during 

assembly were presented for the worst case VIV scenarios examined. 

 The VIV analysis method is trustful within the assumptions of the semi-empirical aerodynamic 

framework applied. It is known that the method can be quite inaccurate providing less-

conservative results when instabilities do exist and more conservative when they are absent. 

 To increase confidence in the results, the aerodynamic framework needs further adaptation 

and calibration, which is only possible through dedicated high fidelity aeroelastic analysis or 

experimental measurements. 
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Thank you 


